Tag Archives: automation

5 More Attributes of Highly Effective Programmers

Nearly 7 years ago, I wrote a little article called The Top 5 Attributes of Highly Effective Programmers that got some good feedback and has proven popular over time.

One matures as a developer, of course. I wrote that last article quite closer to the beginning of my career. Over the last few years, especially at Microsoft, I’ve had the opportunity to witness a much wider range of behaviors. I’ve been able to develop a much better sense of what differentiates the novice from the truly effective developer.

The difference in skills can be truly staggering if you’re not used to seeing it. A new programmer, or one who has not learned much from experience, can often be an order of magnitude or more less productive than a good, experienced developer. You don’t want to spend very long at the bottom of this kind of ranking. Some of this is just experience, but in many cases it’s just a mindset–there are plenty of “experienced” developers who haven’t actually learned to improve. It’s true in many professions, but especially so in programming–you can’t plateau. You have to keep learning. The world changes, programming changes, and what was true 10 years ago is laughably outdated.

The attributes I listed in the previous article are still applicable. They are still valuable, but there is more. Note that I am not claiming in this article that I’ve mastered these. I still aspire to meet higher standards in each of these areas. Remember that it is not hypocrisy to espouse good ideas, even while struggling to live up to them. These are standards to live up to, not descriptions of any one person I know (though I do know plenty of people who are solid in at least one of these areas).

Sense of Ownership

Ownership means a lot of things, but mainly that you don’t wait for problems to find you. It means that if you see a problem, you assume it’s your job to either fix it or find someone else who can, and then to make sure it happens. It means not ignoring emails because, hey, not my problem! It means taking issues seriously and making sure they are dealt with. Someone with a sense of ownership would never sweep a problem under the rug or blithely hope that someone else will deal with it.

You could equate ownership with responsibility, but I think it goes beyond that. “Responsibility” often takes on the hue of a burden or delegation of an unwelcome task, while “ownership” implies that you are invested in the outcome.

Ownership often means stepping outside of your comfort zone. You may think you’re not the best person to deal with something, but if no one else is doing it, than you absolutely are. Just step up, own the problem, and get it done.

Ownership does not mean that you do all the work–that would be draining, debilitating, and ultimately impossible. It does not mean that you specify bounds for your responsibility and forbid others to encroach. It especially does not mean code ownership in the sense that only you are allowed to change your code.

Ownership is a mentality that defies strict hierarchies of control in favor of a more egalitarian opportunism.

Closely related to the idea of ownership is taking responsibility for your mistakes. This means you don’t try to excuse yourself, shift blame, or minimize the issue unnecessarily. If there’s a problem you caused, be straight about it, explain what happened, what you’re going to do to prevent it, and move on.

Together, these ideas on ownership will gain you a reputation as someone who wants the best for the team or product. You want to be that person.

Remember, if you are ever having the thought, Someone ought to…–stop! That someone is you.

Data-Driven

A good developer does not make assumptions. Experience is good, yes, but data is better. Far, far better. Knowing how to measure things is far more important than being able to change them. If you make changes without measuring, then you’re just a random-coding monkey, just guessing that you’re doing something useful. Especially when it comes to performance, building a system to automatically measure performance is actually more important than the actual changes to performance. This is because if you don’t have that system, you will spend far more time doing manual measurement than actual development. See the section on Automation below.

Measurement can be simple. For some bugs, the measurement is merely, does the bug repro or not? For performance tuning of data center server applications, it will likely be orders of magnitude more complicated and involve systems dedicated to measurement.

Determining the right amount of data to make a decision is not always easy. You do have to balance this with expediency, and you don’t want to hold good ideas hostage to more measurement than necessary. However, there is very little you should that do completely blind with no data at all. As a developer, your every action should be independently justifiable.

The mantra of performance optimization is Measure, Measure, Measure. This should be the mantra of all software development. Are things improving or not? Faster or not? How much? Are customers happier or not? Can tasks be completed easier? Are we saving more money? Does it use less memory? Is our capacity larger? Is the UI more responsive? How much, exactly?

The degree to which you measure the answer to those questions is in large part dependent on how important it is to your bottom line.

My day job involves working on an application that runs on thousands of servers, powering a large part of Bing. With something like this, even seemingly small decisions can have a drastic effect in the end. If I make something a bit more inefficient, it could translate into us needing to buy more machines. Great, now my little coding change that I didn’t adequately measure is costing the company hundreds of thousands of extra dollars per year. Oops.

Even for smaller applications, this can be a big deal. For example, making a change that causes the UI to be 20% more sluggish in some cases may not be noticed if you don’t have adequate measurement in place, but if it leads to a bad review by someone who noticed it, and there are adequate competitors, that one decision could be a major loss of revenue.

Solid Tests

Notice that I don’t say “tests”, unqualified. Good tests, solid, repeatable tests. Those are the only ones worth having.

If you see a code change that doesn’t have accompanying test changes, don’t be afraid to ask the question, “Where are the tests?” The answer might be that existing tests cover the change, or that tests at a larger scope, or in a different change will cover it, but the point is to ask the question, and make sure there is a satisfactory answer. “Manual test” is a valid response sometimes, but this should be very rare, and justifiable.

I cannot say how many times I’ve been saved due to the hundreds of unit tests that exercise my code, especially when I’m attempting a big internal refactor, usually for performance reasons.

As important as good tests are, it’s also important to get rid of bad tests. Don’t waste resources on things that aren’t helpful. Insist on a clean, reliable test suite. I’m not sure which is worse: no tests, or tests you can’t rely on. Eventually, unreliable tests become the same as having no tests at all.

Automation

An effective developer is always trying to put themselves out of a job. Seriously. There is more work than you can possibly fit in the time allotted. Automate the heck out of the stuff that annoys you, trips you up, is repetitive, is frequent, is error-prone. Once you can break down a process into something so deterministic that you could write a script for someone else to follow and get the same result, then make sure that someone else is a program.

This is more than just simple maintenance scripts for server management. This is ANY part of your job. Collecting data? Get it automatically ingested into the systems that need it. Generating reports? If you’ve generated the same report more than twice, don’t do it a third time. Your build system requires more than a single step? What’s wrong with you?

You have to free yourself up for more interesting, more creative work. You’re a highly paid programmer. Act like it.

Example: One of my jobs in the last year has been to run regular performance profiling, analyze the results, and send them to my team, making suggestions for future focus. This involved a bunch of steps:

  1. Log onto a random machine in the datacenter.
  2. Start a 120-second CPU profile.
  3. Wait for 120-seconds plus a few minutes for processing, symbol resolution, etc.
  4. Compress file, copy to my machine
  5. Analyze file–group, filter, and sort data according to various rules.
    1. Look for a bunch of standard things that I always report on
  6. Do the same thing for a 900-second memory/exception/thread/etc. profile.

This took about an hour each time, sometimes more.

I realized that every single part of this could happen automatically. I a wrote a service that gets deployed to every datacenter machine. A couple of times per day it checks to see whether we need a profile, whether the machine is in a good state to profile, etc.. It then runs the profiler, collects the data, and even analyzes the data automatically (See Chapter 8 of Writing High-Performance .NET Code for a hint about how I did this). This all gets uploaded to a file server and the analysis gets displayed on a web-site. No intervention whatsoever. Not only do I not have to do this work myself anymore, but others are empowered to look at the data for themselves, and we can easily add more analysis components over time.

Unafraid of Communication

The final thing I want to talk about is communication. This has been a challenge for me. I definitely have the personality type that really likes to disappear into a cave and pound on a keyboard for a few days, to emerge at the end with some magical piece of code. I would delete Outlook from my computer if I could.

This kind of attitude might serve you well for a while, but it’s ultimately limiting.

As you get more senior, communication becomes key. Effective communication skills are one of the things you can use to distinguish yourself to advance your career.

Effective communication can begin with a simple acknowledgement of someone’s issue, or an explanation that you’re working on something, with a follow-up to everyone involved at regular points. Nobody likes to be kept in the dark, especially for burning issues. For time-critical issues, a “next update in XX hours” can be vital.

Effective communication also means being able to say what you’re working on and why it’s cool.

Eventually, it means a lot more–being able to present complicated ideas to many other people in a simple, understandable, logical way.

Good communication skills enable you to be able to move beyond implementing software all by yourself to helping teams as a whole do better software. You can have a much wider impact by helping and teaching others. This is good for your team, your company, and your career.

Do you have a good engineering culture?

I assume one big prerequisite to all of these attributes: You must have a solid engineering environment to operate in. If management gives short shrift to employee happiness, sound software engineering principles, or the workplace is otherwise toxic, than perhaps you need to focus on changing that first.

If your leaders are so short-sighted that they can’t stand the thought of you automating your work instead of just getting the job done, that’s a problem.

If bringing up problems or admitting fault to a mistake is a career-limiting move, then you need to get out soon. That’s a team that will eventually implode under the weight of cumulative failure that no one wants to address.

Don’t settle for this kind of workplace. Either work to change it or find some place better.

 


Check out my latest book, the essential, in-depth guide to performance for all .NET developers:

Writing High-Performance.NET Code, 2nd Edition by Ben Watson. Available for pre-order:

6 Ways to Increase Your Confidence As You Code

One of the key requirements for being able to reliably update software is the confidence that the changes you are making are safe. The amount of confidence required increases with the complexity of the system.

In my day job I work on a real-time messaging system that can have very, very little downtime. As the service grows and sees more traffic, the amount of downtime shrinks. We start to worry now if upgrades take longer than 5 minutes. (It’s almost to the point where we’ll need redundant systems in order to do maintenance).

To upgrade this software, I have to have an awful lot of confidence in the code changes made. Sometimes that confidence varies.

What to do to gain confidence:

1. Consistent process

Having a set of rules to follow is a fundamental requirement of good software engineering. I’m not going to discuss what the process should be, but you should have one that works well.

Why is this important?

Programmers like order. We like well-defined problems where we can see the end from the beginning. We don’t like haziness, indeterminism, or too many choices.

A process nails down the unknowns–it tells you very specifically what the next thing to do is. A good process leaves no room for doubt.

A good development, testing, and deployment process is the first step to building confidence in what you’re doing.

For my messaging system example, here’s a short summary of what our upgrade process is. We didn’t just come up with it–it evolved as our business grew and the requirements grew with it.

  1. All unit and integration tests pass (we have about 2200 automated tests for this that can run in about 4 minutes)
  2. We’ve run it on staging server for a few weeks with no issues.
  3. All new features have been tested on the staging server
  4. Formal change document has been submitted and approved.
  5. Formal test results documented.
  6. Previous version backed up.
  7. Perform upgrade
  8. Monitor system (including custom automated monitoring tools)

At any point, I know where we are in the process and what needs to be done next. Sure, there may be details within these steps that require thought and creativity, but the process guides it all and makes us more confident that we’re not performing ad-hoc operations.

2. Unit Testing

There are other types of testing, but it all starts at the unit level, with simple tests that exercise your code line by line, function by function, feature by feature. I recently wrote a few thoughts about unit testing. Unit testing is where you can see the overall wellness of your code–you want that green bar!

Without unit testing, how do you know the code you’re writing is doing what it should? do you just run it and push it through its paces? This is highly inefficient for most types of code. You’ll run out of steam before you start getting close to edge cases.

The fact is that automated unit tests are a baseline for confidence in your code. You need to be able demonstrate time and again that your code performs well.

This all presupposes that you are writing good unit tests. If you’re not sure, start studying. I don’t buy the arguments about lulling developers into a false sense of security–sure, that can happen, but having good developers who understand this is a prerequisite.

If you’re not unit testing–what is your basis for confidence in your code?

3. Code Coverage

Code coverage goes hand-in-hand with unit testing as a good way to automatically discover what areas of your program are in need of more testing. I’ve found that one of the biggest barriers to unit testing a large C++ application we have is that we have no way of easily measuring test coverage. If we had time, we could definitely to the analysis ourselves, or we could spend a lot of money to get a C++ instrumentation profiler, but these are slow and very tedious to use in my experience.

In .Net, use the tools to your advantage.

The psychological benefits of seeing 75-, 90-, 95-, even 100-percent coverage are immense. You know that every line of the program has at least been touched.

Of course, most code coverage tools analyze line coverage, not path coverage. Combine  complexity analysis with code coverage to determine which functionality should probably have better testing. There are plenty of free and commercial tools that will give you cyclomatic complexity, among other metrics.

Use other analysis tools like FxCop to make sure your other ducks are in a row. It can find easy-to-overlook problems like not validating arguments of public methods, which can then lead to more unit tests and more coverage to achieve.

4. Automation

Take yourself out of the equation as much as possible. The point of a process is to be repeatable–it’s like automating yourself. Not only should unit testing be automated (thankfully, most testing frameworks handle this easily), but so should coverage and quality analyses.

What about deployment? Automate it. Documentation generation? CD master creation? Web upload? E-mail notification? Automate them all. Production builds should be invoked with a single command.

Working on boring, repeatable code? Automate it with code-gen.

The bottom line is: Don’t waste your brain cells on stuff that is highly repeatable, especially when it is prone to mistakes.

5. Code Review

Last week, a rather serious bug was discovered in some of our software (not released yet, thankfully, but close). The bug was mine, and I knew exactly what the problem was, but instead of designing a solution by myself, I brought a co-worker into the discussion just to bounce ideas off of. He had great suggestions, and made me think of things I might not necessarily have thought of on my own. We both went over the code and came to a solution that was simple and acceptable to both of us. The confidence level was much higher with this than it would have been otherwise.

This story is repeated daily by programmers throughout the world. Code review is a practice based on the simple notion that there is no one person smart enough to get it correct the first time.

Even if you’re working alone, which I often do, it pays huge dividends to regularly review your code with an eye for finding trouble. If you see any weakness at all, don’t ignore it–fix it. If you’re reviewing your own code, it’s a good idea to wait a bit after the time you wrote it. This gives your brain a chance to forget a little bit about it. Then, if you find you can’t understand it anymore, it’s either too complicated, or (if it fundamentally really is complicated) you need better comments.

Reviewing with other people has more benefit, however. Not everybody thinks the same way about problems. People have different experience, different expertise and focus, and you can’t take advantage of that if you don’t let them teach you. Even if the other people have less expertise than you, it is still beneficial (assuming they have some basic competency that they can bring to the discussion).

Once you let other people tear into your code (nicely, I hope), your confidence can be higher because you can add the confidence other people have in it (once your problems are corrected, of course!)

6. Repeatable Experiences

In the end, one of the best ways to increase your confidence in yourself, your code, and your practices is to have the evidence of repeated experiences behind you. You’re always learning, and that learning contributes to improvements in processes, testing, and your personal coding practices. Once you learn what works, especially during tricky upgrades, you can go into the next trial with increased confidence that you’re doing something right.

Have any other ideas on increasing confidence? Leave them in the comments!

Technorati Tags: ,,


Check out my latest book, the essential, in-depth guide to performance for all .NET developers:

Writing High-Performance.NET Code, 2nd Edition by Ben Watson. Available for pre-order:

Thoughts on Process: Automation (and examples)

If a process, or part of a process, can be automated it should be. For example, in a project at work, part of our process is to make sure that every dialog present in the English resources of an MFC application is also present in all the other dialogs. We do this manually by loading each language into the app and triggering every dialog. This is tedious, time-consuming, and error-prone. Did I mention we have 12 languages?

A better way would be to have a utility that quickly parses a resource file and extracts the dialog names and compares that list to all the other languages. It could even by expanded to do a control-by-control comparison to make sure all of those were present.

At some point, of course, the dialogs have to be visually inspected for spacing issues in other languages, but for an automated check, it can find the most common errors pretty quickly.

I am a huge fan of automating processes like this. There’s no reason to waste brainpower on highly-repetitive tasks. Even if it takes me a whole day to write a tool, it’s usually worth it.

Examples of automated processes:

  • Build process – if you’re building and packaging your product manually, you’re doing it wrong. All modern environments include command-line, scriptable components. When we build our flagship product, I type “make” and ten minutes later there’s a setup.exe in a distribution folder for our team.
  • Unit testing – Unit testing suites are usually automated to some degree (you hit a button, all tests run), but it can be taken further by running them during builds or as part of a continuous integration server.
  • Documentation/Change-logs – whenever we produce a new build, we send out an e-mail to internal staff about the changes. These are usually culled from the check-in comments in subversion. It’s a manual process. It might be nice to automatically dump them to a file, which can then be edited instead of written from scratch.
  • Code checks – this can encompass almost anything, but having static analysis tools is invaluable. Like the utility that I mentioned earlier to compare resource files across all the languages we support, it can save tons of manual, “stupid” labor.
  • Loading source onto a new machine – How long does it take to get up and running on a new machine? Admittedly, you shouldn’t be switching machines all THAT often, but when you do how easy is it to grab the source and start debugging? Are all the required libraries and tools in source control and automatically configured by build scripts?
  • E-mail – If you’re like me, you get scores if not hundreds of e-mails a day. How are you organizing, sorting, responding, ignoring, deleting them? Setup filters to put them into different folders, highlight or tag them when certain keywords appear. Also, get Google Desktop Search or Windows Desktop Search. I like both of them, but I’m currently using Google’s version. I may switch back in a while.
  • Bug reporting – While not strictly about automation, I think it’s close enough. Reporting bugs and code changes in a text file is good for a while–if you’re the only one working, and you have a small number of them to deal with. Once you start involving more programmers, and perhaps a manager who wants to see some basic reports, the text file doesn’t cut it. Get a simple bug reporting tool. I use BugTracker.Net because it’s easy, simple and does exactly what we need with minimum fuss. How do I know what to work on? I open up a web page and it tells me. I’ve automated not only some manual labor, but also some needless thought processes.
  • Calendaring – Do you need to write a weekly report for your manager? Keep track of employee’s vacation schedules? Use Outlook’s (or whatever PIM you choose) task list and calendar for anything you need to remember about a specific date. Set reminders for when you need to think about them, and then forget about them.
  • Data production – if you’re in a production environment generating data that needs to be analyzed, create tools to do as much of it as possible. Of course, the tools need to be checked for correctness, but once you’re confident, do it and don’t look back.

There are many, many ways you can optimize, reduce, and automated the work you’re doing. Remember, the whole point is to get rid of the “dumb” work and let yourself concentrate on the important, creative things.

Technorati Tags: , , , , , , ,


Check out my latest book, the essential, in-depth guide to performance for all .NET developers:

Writing High-Performance.NET Code, 2nd Edition by Ben Watson. Available for pre-order: