Tag Archives: nuclear

Nuclear Energy and the Question of Uranium Supply

In the replies to my article about nuclear power, there were statements about the supply of uranium the world can provide and that in the end, nuclear power may not be the panacea we hope it would be.

I respectfully disagree.

First, let me state my bias: I am an optimist. I almost never buy into doom and gloom scenarios in any domain. I am cynical about a few things (the ability of politicians to do what’s best for us, for example), but by and large I think things generally work out.

That said, I don’t believe we’ll run out of uranium anytime soon.

It is easy to find reports out there on the availability of uranium. For example, this one by the World Nuclear Association, or another by the European Commission. Those both limit the supply to less than the next 100 years on the outside, and just a couple of decades worst-case.

However, this is by no means the whole story. All of these studies make assumptions that I think are a bit weak, such as the amount of known reserves, current exploration, research, funding, scientific breakthroughs, etc.

Once nuclear energy is a more fundamental part of our energy and economic infrastructure, technology will improve, efficiency will improve, uranium harvesting will improve. It’s cliche, but I’m still going to point out the silly estimates of oil reserves (we’ve had 50 years of oil left for the last 100 years), or food reserves, or overpopulation, or [pick fad]. The reality is that humans are amazing at developing technology to increase our efficiency to amazing levels. We make huge leaps that completely negate all previous predictions. There is no reason to think this will end.

One idea that came up a few times in my research is the idea of mining uranium versus reusing it. Currently, most nuclear plants can only use uranium once before discarding. By using different processes, breeder reactors, including plutonium in the process, the efficiency and life span of uranium can be dramatically increased. Unfortunately, it looks like politics gets in the way of some of these ideas (such as the usage of plutonium).

Politics is tricky. On the one hand, we don’t want bad guys to get a supply of high-grade, volatile nuclear material. On the other hand, we need to learn to take advantage of it for the advancement of all mankind.

A report by the IECD and IAEA estimate uranium supplies lasting from 270 to 8,500 years, depending on our technology and process. There is also an interesting essay by James Hopf, a nuclear engineer, at American Energy Independence. It may be a little biased, but it’s worth reading.

Read the references at the bottom of the Wikipedia article on uranium depletion. There is also a good summary of some of the main studies and ideas on the subject in the article itself.

Check out my latest book, the essential, in-depth guide to performance for all .NET developers:

Writing High-Performance.NET Code, 2nd Edition by Ben Watson. Available for pre-order:

We Need More Growth of Nuclear Power

With this post, I’m beginning a new series or category of bog posts that I’m loosely terming “A Better Future.”

I’ve been thinking a lot about the grail of infinite power, coupled with the enormous rise in gas prices this week.

While I am all in favor of reducing wasteful consumption, increasing efficiency, and generally being smarter about everything, I do not believe we will ever reduce our energy requirements in the long-term. We are always inventing, always creating, and most things we create require power in some form. It’s a fool’s errand to try to reduce the actual energy we’ll use overall. This doesn’t even take into account all of the peoples of the world who are just now beginning to participate in the global economy. There will always be something to eat up the energy we produce. Fighting against this trend seems to me, in a way, trying to run evolution and progress backwards. Our race as a whole won’t do that. Given this, it makes much more sense to develop clean, efficient, abundant, cheap sources of energy.

Increasingly, I am convinced that the way to build out a vast network of nuclear reactors powering our grid. We have an enormous network of power distribution–we should be taking more advantage of it.

According to the US Department of DOE, our 103 active nuclear plants provide 20% of the nation’s electricity. You can even get the operational status of each one.

Worldwide, the IAEA predicts that the electric power generation capacity of the world in 2015 will be roughly 20,000 billion kilowatt hours. In that year, nuclear generation will provide roughly 2,972 billion kilowatt hours, or less than 15%. That report has a lot of other information and I highly encourage you to read it.

We need to increase that percentage drastically–to the point where it supplies power not just to homes, but to plug-in hybrid cars, and everything else.

Nuclear power has gotten a bad rap in the US and other parts of the world for a long time. I think the attitudes are changing, but not quickly enough. At what point will the benefits outweigh the risks in most minds? I think that point is almost upon us.

With the increasing development of pebble-bed reactors, nuclear technology is advancing. We need to increase this development to promote further advances in the safety and efficiency of these promising power sources. None of the operational reactors in the US are pebble-bed reactors (aka HTGR–high temperature gas-cooled reactors), nor are any planned. There is a research reactor at Idaho National Laboratory. All of the commercial HTGR development is taking place for other countries. These reactors, while not universally acclaimed, seem to be safer, cheaper, and the spent fuel less able to be repurposed as weapons-grade material.

We can’t wait for others to do these things–we need to do them. Our country needs to get in on the act at a higher level of commitment than ever. We can’t wait for these technologies to become perfected, either–that will happen over time. As we use a technology more, we will learn new techniques, ways to improve efficiency, and how to lower costs further.

There is no excuse for the US not  to be a leader in this area–we have one of the largest energy demands, the most capital, the most to gain by investing in it, and the most  to lose by not doing it.

The next generation of nuclear technology may not be the ultimate energy savior we’re looking for, but it’s a huge step in the right direction–a step we’ve delayed taking for too long.

Nuclear certainly has some down sides, but I’ll discuss those in a future entry.

Relevant Links:

  1. Pebble-bed reactors at wikipedia
  2. Energy Information Administration / Department of Energy
  3. International Atomic Energy Agency (IAEA)
  4. Inconvenient  Truths: Get Ready to Rethink What It Means to Be Green (Wired Magazine)
  5. Idaho National Laboratory
  6. Module Pebble Bed Reactor (MIT)

Check out my latest book, the essential, in-depth guide to performance for all .NET developers:

Writing High-Performance.NET Code, 2nd Edition by Ben Watson. Available for pre-order: